Point
A
Astart color #6495ed, A, end color #6495ed is at
(
3
,
4
)
(3,4)start color #6495ed, left parenthesis, 3, comma, 4, right parenthesis, end color #6495ed and point
M
Mstart color #9d38bd, M, end color #9d38bd is at
(
5.5
,
0
)
(5.5,0)start color #9d38bd, left parenthesis, 5, point, 5, comma, 0, right parenthesis, end color #9d38bd.
Point
M
Mstart color #9d38bd, M, end color #9d38bd is the midpoint of point
A
Astart color #6495ed, A, end color #6495ed and point
B
Bstart color #28ae7b, B, end color #28ae7b.

Respuesta :

Your question is poorly formatted; However, the correct question is:

Point  A  ( 3 , 4 )  and point  M  (5.5,0) is the midpoint of point  A and point B. Determine the coordinates of B

Answer:

The coordinates of B is (8,-4)

Step-by-step explanation:

Given

Point  A  ( 3 , 4 )

Point  M  (5.5,0)

Required

Determine B

Since, M is the midpoint;

We'll solve this question using the following formula;

[tex]M(x,y) = (\frac{x_1 + x_2}{2},\frac{y_1 + y_2}{2})[/tex]

Where [tex](x,y) = (5.5,0)[/tex] and [tex](x_1,y_1) = (3,4)[/tex]

Substitute values for x, y, x1 and y1 in the above formula;

This gives

[tex](5.5,0) = (\frac{3 + x_2}{2},\frac{4 + y_2}{2})[/tex]

By direct comparison, we have

[tex]5.5 = \frac{3 + x_2}{2}[/tex]  and [tex]0 = \frac{4 + y_2}{2}[/tex]

Solving [tex]5.5 = \frac{3 + x_2}{2}[/tex]

Multiply both sides by 2

[tex]11 = 3 +x_2[/tex]

Subtract 3 from both sides

[tex]11- 3 = x_2[/tex]

[tex]x_2 = 8[/tex]

Solving [tex]0 = \frac{4 + y_2}{2}[/tex]

Multiply both sides by 2

[tex]0 = 4 + y_2[/tex]

Subtract 4 from both sides

[tex]0 - 4 = y_2[/tex]

[tex]y_2 = -4[/tex]

Hence;

The coordinates of B is (8,-4)

Answer:

(8,-4)

I think it's right