Answer:
(i) The period, T is 0.25 s
(ii) The angular velocity, ω is 25.136 rad/s
(iii) The linear velocity is, v is 50.27 m/s
Explanation:
Given;
number of revolution of the particle, N = 240 revolutions per minutes
radius of the circle, R = 2m
(i) The period is given by;
[tex]T = \frac{2\pi}{\omega}[/tex]
where;
ω is angular velocity
[tex]\omega = (240 \frac{rev}{min}) *(\frac{1 \ min}{60 \ s} )*(2\pi \frac{rad}{rev})\\\\ \omega = 25.136 \ rad/s[/tex]
[tex]T = \frac{2\pi }{\omega}\\\\ T = \frac{2\pi}{25.136}\\\\T = 0.25 \ s[/tex]
(ii) angular velocity, ω = 25.136 rad/s
(iii) linear velocity is given by;
v = ωR
v = (25.136 rad/s) x (2 m)
v = 50.27 m/s