An economist is interested in studying the spending habits of consumers in a particular region. The population standard deviation is known to be $1,000. A random sample of 50 individuals resulted in an average expense of $15,000. What is the width of the 99% confidence interval for the mean of expense? a. 364.28 b. 728.55 c. 329.00 d. 657.99

Respuesta :

Answer:

The  width is  [tex]w = \$ 729.7[/tex]

Step-by-step explanation:

From the question we are told that

   The population standard deviation is  [tex]\sigma = \% 1,000[/tex]

    The  sample size is  [tex]n = 50[/tex]

    The sample mean  is  [tex]\= x = \$ 15,000[/tex]

Given that the confidence level is  99% then the level of significance is mathematically represented as  

               [tex]\alpha = 100 - 99[/tex]

=>            [tex]\alpha = 1\%[/tex]

=>             [tex]\alpha = 0.01[/tex]

Next we obtain the critical value of  [tex]\frac{\alpha }{2}[/tex] from the normal distribution table, the value is

             [tex]Z_{\frac{\alpha }{2} } = Z_{\frac{0.01 }{2} } = 2.58[/tex]

Generally margin of error is mathematically represented as

             [tex]E = Z_{\frac{\alpha }{2} * \frac{\sigma }{\sqrt{n} }[/tex]

substituting values

              [tex]E = 2.58 * \frac{1000 }{\sqrt{50} }[/tex]

              [tex]E = 2.58 * \frac{1000 }{\sqrt{50} }[/tex]

               [tex]E = 364.9[/tex]

The width of the 99% confidence interval is mathematically evaluated as

         [tex]w = 2 * E[/tex]

substituting values

          [tex]w = 2 * 364.9[/tex]

          [tex]w = \$ 729.7[/tex]