KairiM
contestada

19. If CD _|_ EF, M<ECH = x + 5 and m<HCD = 3x - 7 find each missing value.
G# F
a) x =
b) m<ECH=
c) m<HCD=
d) m<GCF =
e) m<ECG=
f) m<GCD =​

19 If CD EF MltECH x 5 and mltHCD 3x 7 find each missing valueG Fa x b mltECHc mltHCDd mltGCF e mltECGf mltGCD class=

Respuesta :

[tex]a. $ x = 23^{\circ}\\b. $ m \angle ECH =28^{\circ}\\c. $ m\angle HCD = 62^{\circ}\\d. $ m \angle GCF = 28^{\circ}\\e. $ m \angle ECG = 152^{\circ}\\f. $ m \angle GCD = 118^{\circ}[/tex]

Given:

[tex]m \angle ECH = x + 5\\m \angle HCD = 3x - 7[/tex]

Note the following:

Since CD is perpendicular to EF, therefore:

[tex]m \angle ECD = 90^{\circ}\\m \angle FCD = 90^{\circ}[/tex]

Thus:

a. Find x

[tex]m \angle ECH + m \angle HCD = m \angle ECD[/tex]

Substitute

[tex](x + 5) + (3x - 7) = 90[/tex]

Add like terms

[tex]x + 5 +3x - 7 = 90\\4x -2 = 90\\4x = 90 + 2\\4x = 92[/tex]

Divide both sides by 4

[tex]x = 23[/tex]

b. Find [tex]m \angle ECH[/tex]

[tex]m \angle ECH = x + 5[/tex]

Plug in the value of x

[tex]m \angle ECH = 23+ 5\\m \angle ECH =28^{\circ}[/tex]

c. Find [tex]m \angle HCD[/tex]

[tex]m \angle HCD = 3x - 7\\m \angle HCD = 3(23) - 7\\m \angle HCD = 62^{\circ}[/tex]

d. Find [tex]m \angle GCF[/tex]

[tex]m \angle GCF = m \angle ECH[/tex] (vertical angles are congruent)

Substitute

[tex]m \angle GCF = 28^{\circ}[/tex]

e. Find [tex]m \angle ECG[/tex]

[tex]m \angle ECG = 180 - m \angle GCF[/tex] (angles on a straight line)

Substitute

[tex]m \angle ECG = 180 - 28\\m \angle ECG = 152^{\circ}[/tex]

f. Find [tex]m \angle GCD[/tex]

[tex]m \angle GCD = m\angle FCD + m \angle GCF[/tex]

Substitute

[tex]m \angle GCD = 90 + 28\\m \angle GCD = 118^{\circ}[/tex]

Therefore:

[tex]a. $ x = 23^{\circ}\\b. $ m \angle ECH =28^{\circ}\\c. $ m\angle HCD = 62^{\circ}\\d. $ m \angle GCF = 28^{\circ}\\e. $ m \angle ECG = 152^{\circ}\\f. $ m \angle GCD = 118^{\circ}[/tex]

Learn more here:

https://brainly.com/question/18292462