Answer:
Step-by-step explanation:
Given the limit of the function [tex]\lim_{(x,y,z) \to (7,0,2)} e^{-xy}sin\dfrac{\pi z}{4} }[/tex]
First step is to substitute the given values of x, y and z into the function given as shown;
[tex]\lim_{(x,y,z) \to (7,0,2)} e^{-xy}sin\dfrac{\pi z}{4} }\\\\= e^{-(7)(0)}sin\dfrac{\pi (2)}{4} }\\\\\\= e^{-0}sin\dfrac{\pi}{2} }\\\\\\= 1*sin\frac{\pi}{2} \\\\= 1*sin90^0\\\\= 1* 0\\\\= 0[/tex]
The limit therefore exist since the limit of the function at the given point gave us a finite value which is zero.