In an experiment to determine whether there is a systematic difference between the weights obtained with two different mass balances, six specimens were weighed, in grams, on each balance. The following data were obtained:
Specimen A B
1 13.76 13.74
2 12.47 12.45
3 10.09 10.08
4 8.91 8.92
5 13.57 13.54
6 12.74 12.75
Can you conclude that the mean weight differs between the two balances?
i). State the null and alternative hypotheses.
ii). Compute the test statistic.
iii). State a conclusion using the a =0.05 level of significance.

Respuesta :

Answer:

H0: μd=0 Ha: μd≠0

t= 0.07607

On the basis of this we conclude that the mean weight differs between the two balances.

Step-by-step explanation:

The null and alternative hypotheses as

H0: μd=0 Ha: μd≠0

Significance level is set at ∝= 0.05

The critical region is t ( base alpha by 2 with df=5) ≥ ± 2.571

The test statistic under H0 is

t = d/ sd/ √n

Which has t distribution with n-1 degrees of freedom

Specimen        A               B           d = a - b         d²

1                     13.76        13.74         0.02           0.004

2                    12.47        12.45          0.02         0.004

3                    10.09        10.08           0.01        0.001

4                       8.91       8.92          -0.01          0.001

5                     13.57      13.54           0.03        0.009

6                     12.74      12.75          -0.01        0.001

∑                                                      0.06         0.0173

d`= ∑d/n= 0.006/6= 0.001

sd²= 1/6( 0.0173- 0.006²/6) = 1/6 ( 0.017294) = 0.002882

sd= 0.05368

t= 0.001/ 0.05368/ √6

t= 0.18629/2.449

t= 0.07607

Since the calculated value of t= 0.07607 does not falls in the rejection region we therefore accept the null hypothesis at 5 % significance level . On the basis of this we conclude that the mean weight differs between the two balances.