Respuesta :
Answer:
[tex]$\boxed{\log _2\left(\frac{zx^2}{y^2} \right) +\log _9(y^4 x^{12})} $[/tex]
Step-by-step explanation:
[tex]\log _2z+2\log _2x+4\log _9y+12\log _9x-2\log _2y[/tex]
We have logarithms in base 2 and 9. Let's rewrite it:
[tex]\log _2z+2\log _2x-2\log _2y+4\log _9y+12\log _9x[/tex]
Remember that:
[tex]\boxed{p\log _bc=\log _b c^p}[/tex]
[tex]\log _2z+\log _2 x^2 -\log _2y^2 +\log _9y^4+\log _9x^{12}[/tex]
Remember the Product Rule:
[tex]\boxed{\log_b(xy)=\log_bx + \log_by}[/tex]
[tex]\log _2(zx^2) -\log _2y^2 +\log _9(y^4 x^{12})[/tex]
Finally, remember the Quotient Rule:
[tex]$\boxed{\log_b\left(\frac{x}{y} \right)=\log_bx - \log_by}$[/tex]
[tex]$\log _2\left(\frac{zx^2}{y^2} \right) +\log _9(y^4 x^{12})$[/tex]