Respuesta :

Answer:

[tex]$\boxed{\log _2\left(\frac{zx^2}{y^2} \right) +\log _9(y^4 x^{12})} $[/tex]

Step-by-step explanation:

[tex]\log _2z+2\log _2x+4\log _9y+12\log _9x-2\log _2y[/tex]

We have logarithms in base 2 and 9. Let's rewrite it:

[tex]\log _2z+2\log _2x-2\log _2y+4\log _9y+12\log _9x[/tex]

Remember that:

[tex]\boxed{p\log _bc=\log _b c^p}[/tex]

[tex]\log _2z+\log _2 x^2 -\log _2y^2 +\log _9y^4+\log _9x^{12}[/tex]

Remember the Product Rule:

[tex]\boxed{\log_b(xy)=\log_bx + \log_by}[/tex]

[tex]\log _2(zx^2) -\log _2y^2 +\log _9(y^4 x^{12})[/tex]

Finally, remember the Quotient Rule:

[tex]$\boxed{\log_b\left(\frac{x}{y} \right)=\log_bx - \log_by}$[/tex]

[tex]$\log _2\left(\frac{zx^2}{y^2} \right) +\log _9(y^4 x^{12})$[/tex]

Answer


I only know how to get the answer but not explain