A study of 25 graduates of four-year public colleges revealed the mean amount owed by a student in student loans was $55,051. The standard deviation of the sample was $7,568.

Required:
a. Construct a 90% confidence interval for the population mean.
b. Confidence interval for the population men between _______ up to_______________

Respuesta :

Answer:

a

   The  90%  confidence interval is  [tex]52561.13 < \mu < 57540.8[/tex]

b

Confidence interval for the population men between $52561.13  up to $57540.8

Step-by-step explanation:

From the question we are told that

   The sample size is  [tex]n = 25[/tex]

     The  sample mean is  [tex]\= x = \$ 55,051[/tex]

     The standard deviation is  [tex]\sigma = \$ 7,568[/tex]

Given that the confidence level is  90% then the level of confidence is mathematically represented as

             [tex]\alpha = 100 -90[/tex]

              [tex]\alpha = 10\%[/tex]

             [tex]\alpha = 0.10[/tex]

Next we obtain the critical value of [tex]\frac{\alpha }{2}[/tex] from the normal distribution table the values is  

               [tex]Z_{\frac{\alpha }{2} } = 1.645[/tex]

Generally the margin of error is mathematically  represented as

               [tex]E = Z_{\frac{ \alpha }{2} } * \frac{ \sigma }{\sqrt{n} }[/tex]

substituting values

               [tex]E = 1.645 * \frac{ 7568}{ \sqrt{ 25} }[/tex]

             [tex]E = 2489.9[/tex]

The 90% confidence interval is mathematically evaluated as

       [tex]\= x -E < \mu < \= x +E[/tex]

substituting values

     [tex]55051 - 2489.8 < \mu < 55051 + 2489.8[/tex]

     [tex]52561.13 < \mu < 57540.8[/tex]