Respuesta :

Answer:

[tex] \boxed{\sf (3x - 2)(2x + 1)} [/tex]

Step-by-step explanation:

[tex] \sf Factor \: the \: following: \\ \sf \implies 6 {x}^{2} - x - 2 \\ \\ \sf The \: coefficient \: of \: {x}^{2} \: is \: 6 \: and \: the \: constant \\ \sf term \: is \: - 2. \: The \: product \: of \: 6 \: and \: - 2 \\ \sf is \: - 12. \\ \sf The \: factors \: of \: - 12 \: which \: sum \: to \\ \sf - 1 \: are \: 3 \: and \: - 4. \\ \\ \sf So, \\ \sf \implies 6 {x}^{2} - 4x + 3x - 2 \\ \\ \sf \implies 2x(3x - 2) + 1(3x - 2) \\ \\ \sf \implies (3x - 2)(2x + 1)[/tex]

Answer:

[tex] \boxed{(2x + 1)(3x - 2)}[/tex]

Step-by-step explanation:

[tex] \mathsf{ {6x}^{2} - x - 2}[/tex]

Write -x as a difference

[tex] \mathsf{6 {x}^{2} + 3x - 4x - 2}[/tex]

Factor out 3x from the expression

[tex] \mathsf{3x(2x + 1) - 4x - 2}[/tex]

Factor out -2 from the expression

[tex] \mathsf{3x(2x + 1) - 2(2x + 1)}[/tex]

Factor out 2x + 1 from the expression

[tex] \mathsf{(2x + 1)(3x - 2)}[/tex]

[tex] \mathcal{Hope \: I \: helped!}[/tex]

[tex] \mathcal{Best \: regards!}[/tex]