Respuesta :

●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●

      Hi my lil bunny!

❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙

Let's solve your inequality step-by-step.

[tex]x(x+2)<x[/tex]

[tex]x^2 + 2x < x[/tex]

Let's find the critical points of the inequality.

[tex]x^2 + 2x = x[/tex]

[tex]x^2 + 2x - x - x[/tex]  (Subtract x from both sides)

[tex]x^2 + x = 0[/tex]

[tex]x ( x + 1 ) = 0[/tex] (Factor left side of equation)

[tex]x = 0 |OR| x + 1 = 0[/tex] (Set factors equal to 0)

[tex]x = 0 |OR| x = -1[/tex]

Check intervals in between critical points. (Test values in the intervals to see if they work.)

[tex]x < - 1[/tex] (Doesn't work in original inequality)

[tex]-1 < x < 0[/tex] (Works in original inequality)

[tex]x > 0[/tex]  (Doesn't work in original inequality)

So the answer is : [tex]-1 < x < 0[/tex]

❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙

●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●

If this helped you, could you maybe give brainliest..?

❀*May*❀