Respuesta :

Answer:

[tex]30x\sqrt{2y}[/tex]

Step-by-step explanation:

First, multiply sqrt.(6x) by sqrt.(15xy)

That equals sqrt.[tex]\sqrt{90x^{2}y } *\sqrt{20}[/tex]

then, rewrite [tex]90x^{2} y[/tex] as (3x)^2 * (10y)

you have [tex]\sqrt{(3x)^{2} *(10y)} *\sqrt{20}[/tex]

Next, pull the terms from out under the radical, to get:

[tex]3x\sqrt{10y} *\sqrt{20}[/tex]

Now rewrite 20 as 2^2 * 5

You get [tex]3x\sqrt{10y} *(2\sqrt{5} )[/tex]

Multiply everything together to get: [tex]6x\sqrt{50y}[/tex]

Now rewrite 50 y as 5^2 * 2y

You end up with [tex]6x\sqrt{5^{2}*(2y)}[/tex]

Then, pull out the terms from under the radical.  You get:

[tex]6x(5\sqrt{2y})[/tex]

Finally, multiply the 5 and 6 together to get: [tex]30x\sqrt{2y}[/tex]

Answer:

[tex]\boxed{30\sqrt{2} x^2 y}[/tex]

Step-by-step explanation:

[tex]\sqrt{6} *x*\sqrt{15} * x*y*\sqrt{20}[/tex]

[tex]\sf Multiply[/tex]

[tex]\sqrt{6}\sqrt{15}\sqrt{20}*x*x*y[/tex]

[tex]\sqrt{6*15*20}*x^2 *y[/tex]

[tex]\sqrt{1800}x^2y[/tex]

[tex]\sf Simplify[/tex]

[tex]\sqrt{900} \sqrt{2} x^2y[/tex]

[tex]30\sqrt{2} x^2 y[/tex]