Answer:
z = 1.17
P - value = 0.0047
Step-by-step explanation:
A.
From the given information;
H0: p = 0.4 versus
Ha: p > 0.4,
Let's calculate the population proportion for the point estimate;
the population proportion [tex]\hat p[/tex] = 147/341
the population proportion [tex]\hat p[/tex] = 0.431085
However; the test statistics can therefore be determined by using the formula:
[tex]z = \dfrac{\hat p - p_o}{\sqrt{\dfrac{p_o(1-p_o)}{n}}}[/tex]
[tex]z = \dfrac{0.431085 - 0.40}{\sqrt{\dfrac{0.40(1-0.40)}{341}}}[/tex]
[tex]z = \dfrac{0.031085}{\sqrt{\dfrac{0.40(0.60)}{341}}}[/tex]
[tex]z = \dfrac{0.031085}{\sqrt{\dfrac{0.24}{341}}}[/tex]
[tex]z = \dfrac{0.031085}{\sqrt{7.03812317 \times 10^{-4}}}[/tex]
[tex]z = \dfrac{0.031085}{0.0265294613}[/tex]
z = 1.1717
z = 1.17 to two decimal places
B.)
The null and the alternative hypothesis is given as:
H0: p = 0.33 versus
Ha: p > 0.33,
The z = 2.5990.
The objective here is to determine the p-value from the z test statistics.
P - value = P(Z > 2.5990)
P- value = 1 - P(Z < 2.5990)
P - value = 1 - 0.9953
P - value = 0.0047