Respuesta :

Answer:

76 degrees.

Step-by-step explanation:

Let as consider O is the center of the circle . So from the figure it is clear that

[tex]\angle AOB=44^{\circ}[/tex]

[tex]\angle COD=118^{\circ}[/tex]

By central angle theorem, central angle subtended by an arc is twice of inscribed angle of the same arc.

We know that, [tex]\angle BAD=97^{\circ}[/tex] and angle BOD is the central angle subtended by arc BD.

[tex]\angle BOD=2\times \angle BAD[/tex]

[tex]\angle BOD=2\times 97^{\circ}[/tex]

[tex]\angle BOD=194^{\circ}[/tex]

Now,

[tex]\angle BOD=\angle BOC+\angle COD[/tex]

[tex]194^{\circ}=\angle BOC+118^{\circ}[/tex]

[tex]194^{\circ}-118^{\circ}=\angle BOC[/tex]

[tex]76^{\circ}=\angle BOC[/tex]

[tex]m(arc(BC))=76^{\circ}[/tex]

Therefore, the measure of arc BC is 76 degrees.

Ver imagen erinna