Find the center, vertices, and foci of the ellipse with equation 4x2 + 9y2 = 36. Center: (0, 0); Vertices: (-3, 0), (3, 0); Foci: Ordered pair negative square root 5 comma 0 and ordered pair square root 5 comma 0 Center: (0, 0); Vertices: (-9, 0), (9, 0); Foci: Ordered pair negative square root 65 comma 0 and ordered pair square root 65 comma 0 Center: (0, 0); Vertices: (0, -3), (0, -3); Foci: Ordered pair 0 comma negative square root 5 and ordered pair 0 comma square root 5 Center: (0, 0); Vertices: (0, -9), (0, 9); Foci: Ordered pair 0 comma negative square root 65 and ordered pair 0 comma square root 65

Respuesta :

Answer:

Option A.

Step-by-step explanation:

The given equation of ellipse is

[tex]4x^2+9y^2=36[/tex]

Divide both sides by 36.

[tex]\dfrac{4x^2}{36}+\dfrac{9y^2}{36}=1[/tex]

[tex]\dfrac{x^2}{9}+\dfrac{y^2}{4}=1[/tex]

[tex]\dfrac{x^2}{3^2}+\dfrac{y^2}{2^2}=1[/tex]    ...(1)

The standard form of an ellipse is

[tex]\dfrac{(x-h)^2}{a^2}+\dfrac{(y-k)^2}{b^2}=1[/tex]    ...(2)

where, (h,k) is center, (h±a,k) are vertices and (h±c,k) are foci.

On comparing (1) and (2), we get

[tex]h=0,k=0,a=3,b=2[/tex]

Now,

Center [tex]=(h,k)=(0,0)[/tex]

Vertices [tex]=(h\pm a,k)=(0\pm 3,0)=(3,0),(-3,0)[/tex]  

We know that

[tex]c=\sqrt{a^2-b^2}=\sqrt{3^2-2^2}=\sqrt{5}[/tex]

Foci [tex]=(h\pm c,k)=(0\pm \sqrt{5},0)=(\sqrt{5},0),(-\sqrt{5},0)[/tex]

Therefore, the correct option is A.