Respuesta :
Answer:
a. the control limits should be set at (10.72, 11.28)
b. [tex]\mathbf{P(10.72<x<11.28) = 0.4526}[/tex]
c. [tex]\mathbf{P(10.72<x<11.28) = 0.0065}[/tex]
Step-by-step explanation:
Given that:
population mean μ = 11
standard deviation [tex]\sigma[/tex] = 1.0
sample size n = 35
5% of the sample means will be greater than the upper control limit, and 5% of the sample means will be less than the lower control limit.
Therefore, level of significance ∝ = 0.05+0.05 = 0.10
Critical value for [tex]z_{1-\alpha/2} =z_{1-0.10 /2}[/tex]
[tex]\implies z_{1-0.05} = z_{0.95}[/tex]
Using the EXCEL FORMULA: = NORMSINV (0.95)
z = 1.64
The lower control limit and the upper control limit can be determined by using the respective formulas:
Lower control limit = [tex]\mathtt{\mu - z_{1-\alpha/2} \times \dfrac{\sigma}{\sqrt{n}}}[/tex]
Upper control limit = [tex]\mathtt{\mu + z_{1-\alpha/2} \times \dfrac{\sigma}{\sqrt{n}}}[/tex]
For the lower control limit = [tex]11-1.64 \times \dfrac{1.0}{\sqrt{35}}[/tex]
For the lower control limit = [tex]11-0.27721[/tex]
For the lower control limit = 10.72279
For the lower control limit [tex]\simeq[/tex] 10.72
For the upper control limit = [tex]11+1.64 \times \dfrac{1.0}{\sqrt{35}}[/tex]
For the upper control limit = 11 + 0.27721
For the upper control limit = 11.27721
For the upper control limit [tex]\simeq[/tex] 11.28
Therefore , the control limits should be set at (10.72, 11.28)
b. If the population mean shifts to 10.7, what is the probability that the change will be detected?
i.e
[tex]\mathtt{P(10.72<x<11.28) = P( \dfrac{X- \mu}{\dfrac{\sigma}{\sqrt{n}}}<z < \dfrac{X- \mu}{\dfrac{\sigma}{\sqrt{n}}}})[/tex]
[tex]\mathtt{P(10.72<x<11.28) = P( \dfrac{10.72- 10.7}{\dfrac{1.0}{\sqrt{35}}}<z < \dfrac{11.28- 10.7}{\dfrac{1.0}{\sqrt{35}}}})[/tex]
[tex]\mathtt{P(10.72<x<11.28) = P( \dfrac{0.02}{\dfrac{1.0}{5.916}}<z < \dfrac{0.58}{\dfrac{1.0}{5.916}}})[/tex]
[tex]\mathtt{P(10.72<x<11.28) = P(0.1183<z < 3.4313})[/tex]
[tex]\mathtt{P(10.72<x<11.28) = P(z< 3.4313) - P(z< 0.1183) }[/tex]
Using the EXCEL FORMULA: = NORMSDIST (3.4313) - NORMSDIST (0.118 ); we have:
[tex]\mathbf{P(10.72<x<11.28) = 0.4526}[/tex]
c If the population mean shifts to 11.7, what is the probability that the change will be detected?
i.e
[tex]\mathtt{P(10.72<x<11.28) = P( \dfrac{X- \mu}{\dfrac{\sigma}{\sqrt{n}}}<z < \dfrac{X- \mu}{\dfrac{\sigma}{\sqrt{n}}}})[/tex]
[tex]\mathtt{P(10.72<x<11.28) = P( \dfrac{10.72- 11.7}{\dfrac{1.0}{\sqrt{35}}}<z < \dfrac{11.28- 11.7}{\dfrac{1.0}{\sqrt{35}}}})[/tex]
[tex]\mathtt{P(10.72<x<11.28) = P( \dfrac{-0.98}{\dfrac{1.0}{5.916}}<z < \dfrac{-0.42}{\dfrac{1.0}{5.916}}})[/tex]
[tex]\mathtt{P(10.72<x<11.28) = P(-5.7978<z < -2.48472})[/tex]
[tex]\mathtt{P(10.72<x<11.28) = P(z< -2.48472) - P(z< -5.7978) }[/tex]
Using the EXCEL FORMULA: = NORMSDIST (-2.48472) - NORMSDIST (-5.7978); we have:
[tex]\mathbf{P(10.72<x<11.28) = 0.0065}[/tex]