Answer:
[tex]r=4.24\times 10^{11}\ m[/tex]
Explanation:
Given that,
Orbital time period, T = 3.75 earth years
Mass of star, [tex]m=3.23\times 10^{30}\ kg[/tex]
We need to find the radius of the exoplanet's orbit. It is a concept of Kepler's third law of motion i.e.
[tex]T^2=\dfrac{4\pi^2}{GM}r^3[/tex]
r is the radius of the exoplanet's orbit.
Solving for r we get :
[tex]r=(\dfrac{T^2GM}{4\pi^2})^{1/3}[/tex]
We know that, [tex]1\ \text{earth year}=3.154\times 10^7\ \text{s}[/tex]
So,
[tex]r=(\dfrac{(3.75\times 3.154\times 10^7)^2\times 6.67\times 10^{-11}\times 3.23\times 10^{30}}{4\pi^2})^{1/3}\\\\r=4.24\times 10^{11}\ m[/tex]
So, the radius of the exoplanet's orbit is [tex]4.24\times 10^{11}\ m[/tex].