contestada

A particle moves along line segments from the origin to the points (1, 0, 0), (1, 5, 1), (0, 5, 1), and back to the origin under the influence of the force field. F(x, y, z)= z^2i + 4xyj + 5y^2kFind the work done.

Respuesta :

Answer:

0 J

Explanation:

Since work done W = ∫F.dr and F(x, y, z)= z²i + 4xyj + 5y²k and dr = dxi + dyj + dzk

F.dr = (z²i + 4xyj + 5y²k).(dxi + dyj + dzk) = z²dx + 4xydy + 5y²dz

W = ∫F.dr = ∫z²dx + 4xydy + 5y²dz = z²x + 2xy² + 5y²z

We now evaluate the work done for the different regions

W₁ = work done from (0,0,0) to (1,0,0)

W₁ = {z²x + 2xy² + 5y²z}₀₀₀¹⁰⁰ = 0²(1) + 2(1)(0)² + 5(0)²(0) - [(0)²(0) + 2(0)(0)² + 5(0)²(0)] = 0 - 0 = 0 J

W₂ = work done from (1,0,0) to (1,5,1)

W₂ = {z²x + 2xy² + 5y²z}₁₀₀¹⁵¹ =   (1)²(1) + 2(1)(5)² + 5(5)²(1) - [0²(1) + 2(1)(0)² + 5(0)²(0)] =  1 + 50 + 125 - 0 = 176 J

W₃ = work done from (1,5,1) to (0,5,1)

W₃ = {z²x + 2xy² + 5y²z}₁₅₁⁰⁵¹ =   1²(0) + 2(0)(5)² + 5(5)²(1) - [(1)²(1) + 2(1)(5)² + 5(5)²(1)]  = 125 - (1 + 50 + 125) = 125 - 176 = -51 J

W₄ = work done from (0,5,1) to (0,0,0)

W₄ = {z²x + 2xy² + 5y²z}₁₅₁⁰⁰⁰ =   (0)²(0) + 2(0)(0)² + 5(0)²(0) - [1²(0) + 2(0)(5)² + 5(5)²(1)] = 0 - 125 = -125 J

The total work done W is thus

W = W₁ + W₂ + W₃ + W₄

W = 0 J + 176 J - 51 J - 125 J

W = 176 J - 176 J

W = 0 J

The total work done equals 0 J