Answer:
[tex]\huge\boxed{n\leq\dfrac{2-2c}{p}\ \text{for}\ p<0}\\\boxed{n\geq\dfrac{2-2c}{p}\ \text{for}\ p>0}[/tex]
Step-by-step explanation:
[tex]-np-4\leq2(c-3)\qquad\text{use the distributive property}\\\\-np-4\leq2c-6\qquad\text{add 4 to both sides}\\\\-np\leq2c-2\qquad\text{change the signs}\\\\np\geq2-2c\qquad\text{divide both sides by}\ p\neq0\\\\\text{If}\ p<0,\ \text{then flip the sign of inequality}\\\boxed{n\leq\dfrac{2-2c}{p}}\\\text{If}\ p>0 ,\ \text{then}\\\boxed{n\geq\dfrac{2-2c}{p}}[/tex]