Answer:
There is not sufficient evidence to support a claim of linear correlation between the two variables.
Step-by-step explanation:
The data provided is as follows:
X Y
78 5.5
79 8.8
56.2 3.3
68.3 1.7
77.9 10.8
38.2 0.1
(a)
The scatter plot is attached below.
(b)
Use the Excel function: =CORREL(array1, array2) to compute the correlation coefficient, r.
The correlation coefficient between the number of internet users and the award winners is,
r = 0.797.
(c)
The test statistic value is:
[tex]t=r\sqrt{\frac{n-2}{1-r^{2}}}[/tex]
[tex]=0.797\times\sqrt{\frac{6-2}{1-(0.797)^{2}}}\\\\=0.797\times 3.311372\\\\=2.639163484\\\\\approx 2.64[/tex]
The degrees of freedom is,
df = n - 2
= 6 - 2
= 4
Compute the p-value as follows:
[tex]p-value=P(t_{n-2}<2.64)=0.057[/tex]
*Use a t-table.
p-value = 0.057 > α = 0.05
The null hypothesis will not be rejected.
Thus, it can be concluded that there is not sufficient evidence to support a claim of linear correlation between the two variables.