Respuesta :
Answer:
[tex]\boxed{\sf Obtuse \ Angled \ Triangle}[/tex]
Explanation:
Let's check it by Pythagorean theorem:
[tex]\sf c^2 = a^2+b^2[/tex]
Where c = 6, a = 4 and b = 3
[tex]\sf (6)^2= (4)^2+(3)^2[/tex]
[tex]\sf 36 = 16+9[/tex]
[tex]36 \neq 25[/tex]
But,
[tex]\sf 36> 25[/tex]
When [tex]\sf c^2 > a^2+b^2[/tex], then the triangle is obtuse angled triangle.
Answer:
[tex]\boxed{ \sf Obtuse \ triangle}[/tex]
Explanation:
We can check if the triangle is a right triangle or not by using Pythagorean theorem.
[tex]c=\sqrt{a^2 +b^2 }[/tex]
[tex]6=\sqrt{3^2 +4^2 }[/tex]
[tex]6=\sqrt{9+16 }[/tex]
[tex]6=\sqrt{25 }[/tex]
[tex]6=5[/tex]
The triangle is not a right triangle.
When [tex]c>\sqrt{a^2 +b^2 }[/tex], the triangle is an obtuse triangle.