The A block, with negligible dimensions and weight P, is supported by the coordinate point (1.1/2) of the parabolic fixed grounded surface, from equation y = x^2/2 If the block is about to slide, what is the coefficient of friction between it and the surface; determine the force F tangent to the surface, which must be applied to the block to start the upward movement.

The A block with negligible dimensions and weight P is supported by the coordinate point 112 of the parabolic fixed grounded surface from equation y x22 If the class=

Respuesta :

Answer:

μ = 1

F = P√2

Explanation:

The parabola equation is: y = ½ x².

The slope of the tangent is dy/dx = x.

The angle between the tangent and the x-axis is θ = tan⁻¹(x).

At x = 1, θ = 45°.

Draw a free body diagram of the block.  There are three forces:

Weight force P pulling down,

Normal force N pushing perpendicular to the surface,

and friction force Nμ pushing up tangential to the surface.

Sum of forces in the perpendicular direction:

∑F = ma

N − P cos 45° = 0

N = P cos 45°

Sum of forces in the tangential direction:

∑F = ma

Nμ − P sin 45° = 0

Nμ = P sin 45°

μ = P sin 45° / N

μ = tan 45°

μ = 1

Draw a new free body diagram.  This time, friction force points down tangential to the surface, and applied force F pushes up tangential to the surface.

Sum of forces in the tangential direction:

∑F = ma

F − Nμ − P sin 45° = 0

F = Nμ + P sin 45°

F = (P cos 45°) μ + P sin 45°

F = P√2