Answer:
[tex]B(a)=\frac{a}{5} -7[/tex]
Step-by-step explanation:
The input it taken as the unknown base value, while the output here is the area of the trapezoid. b is therefore the base value, and A( b ) is the area of the trapezoid. Let's formulate the equation for the area of the trapezoid, and isolate the area of the trapezoid. To find the inverse of this function, switch y ( this is A( b ) ) and b, solving for y once more, y ➡ y ⁻ ¹.
y = height [tex]*[/tex] ( ( unknown base value ( b ) + 7 ) / 2 ),
y = 10 [tex]*[/tex] ( ( b + 7 ) / 2 )
Now switch the positions of y and b -
b = 10 [tex]*[/tex] ( ( y + 7 ) / 2 ) or [tex]b=\frac{\left(y+7\right)\cdot \:10}{2}[/tex] - now that we are going to take the inverse ( y ⁻ ¹ ) or B( a ), b will now be changed to a,
[tex]y+7=\frac{a}{5}[/tex],
[tex]y^{-1}=\frac{a}{5}-7 = B(a)[/tex]
Therefore the equation that represents the inverse function will be the following : B(a) = a / 5 - 7