Respuesta :

Answer:

[tex] Area = 1,309.0 in^2 [/tex]

Step-by-step explanation:

Given:

∆TUV

m < U = 22°

TV = u = 47 in

m < V = 125°

Required:

Area of ∆TUV

Solution:

Find the length of UV using the Law of Sines

[tex] \frac{t}{sin(T)} = \frac{u}{sin(U)} [/tex]

U = 22°

u = TV = 47 in

T = 180 - (125 + 22) = 33°

t = UV = ?

[tex] \frac{t}{sin(33)} = \frac{47}{sin(22)} [/tex]

Multiply both sides by sin(33)

[tex] \frac{t}{sin(33)}*sin(33) = \frac{47}{sin(22)}*sin(33) [/tex]

[tex] t = \frac{47*sin(33)}{sin(22)} [/tex]

[tex] t = 68 in [/tex] (approximated)

[tex] t = UV = 68 in [/tex]

Find the area of ∆TUV

[tex] area = \frac{1}{2}*t*u*sin(V) [/tex]

[tex] = \frac{1}{2}*68*47*sin(125) [/tex]

[tex] = \frac{68*47*sin(125)}{2} [/tex]

[tex] Area = 1,309.0 in^2 [/tex] (to nearest tenth).