Respuesta :

[tex]\dfrac{15 + 10i}{1 + 2i}=\\\\\dfrac{(15 + 10i)(1-2i)}{(1 + 2i)(1-2i)}=\\\\\dfrac{15-30i+10i+20}{1+4}=\\\\\dfrac{35-20i}{5}=\\\\7-4i[/tex]

Answer:

7-4i

Step-by-step explanation:

Multiplying the numerator and denominator by $1-2i$ gives

\begin{align*}

\frac{15+10i}{1+2i} &= \frac{15+10i}{1+2i}\cdot\frac{1-2i}{1-2i}\\

&= \frac{(15+10i)(1-2i)}{1^2 + 2^2} \\

&= \frac{5(3 + 2i)(1 - 2i)}{5} \\

&= (3 + 2i)(1 - 2i) \\

&= 3 + 2i - 6i - 4i^2 \\

&= 3 + 2i - 6i + 4 \\

&= \boxed{7 - 4i}.