Respuesta :

Answer:

[tex] \boxed{\sf x = -7} [/tex]

Step-by-step explanation:

[tex] \sf Solve \: for \: x: \\ \sf \implies - 30 = 5(x + 1) \\ \\ \sf - 30 =5(x+ 1) \: is \: equivalent \: to \: 5 (x + 1) = - 30: \\ \sf \implies 5(x + 1) = - 30 \\ \\ \sf Divide \: both \: sides \: of \: 5(x+ 1) = - 30 \: by \: 5: \\ \sf \implies \frac{5(x + 1)}{5} = - \frac{30}{5} \\ \\ \sf \frac{5}{5} = 1 : \\ \sf \implies x + 1 = - \frac{30}{5} \\ \\ \sf - \frac{30}{5} = - \frac{6 \times \cancel{5}}{ \cancel{5}} = - 6 : \\ \sf \implies x + 1 = - 6 \\ \\ \sf Subtract \: 1 \: from \: both \: sides: \\ \sf \implies x + (1 - 1) = - 6 - 1 \\ \\ \sf 1 - 1 = 0 : \\ \sf \implies x = - 6 - 1 \\ \\ \sf - 6 - 1 = - 7 : \\ \sf \implies x = - 7[/tex]

Answer:

[tex] \boxed{x = - 7}[/tex]

Step-by-step explanation:

[tex] \mathrm{ - 30 = 5(x + 1)}[/tex]

Distribute 5 through the parentheses

[tex] \mathrm{ - 30 = 5x + 5} [/tex]

Move constant to L.H.S and change its sign

[tex] \mathrm{ - 30 - 5 = 5x}[/tex]

Calculate

[tex] \mathrm{ - 35 = 5x}[/tex]

Swipe the sides of the equation

[tex] \mathrm{5x = - 35}[/tex]

Divide both sides of the equation by 5

[tex] \mathrm{ \frac{5x}{5} = \frac{ - 35}{5} }[/tex]

Calculate

[tex] \mathrm{x = - 7}[/tex]

Hope I helped!

Best regards!!