Answer:
Step-by-step explanation:
[tex] {4}^{ \frac{3}{4} } \times {2}^{x} = {16}^{ \frac{2}{5} } [/tex]
In order to solve the equation express each of the terms in the same base .
in this case we express each of the terms in base 2
That's
[tex] {4}^{ \frac{3}{4} } = {2}^{2 \times \frac{3}{4} } = {2}^{ \frac{3}{2} } [/tex]
And
[tex] {16}^{ \frac{2}{5} } = {2}^{4 \times \frac{2}{5} } = {2}^{ \frac{8}{5} } [/tex]
So we have
[tex] {2}^{ \frac{3}{2} } \times {2}^{x} = {2}^{ \frac{8}{5} } [/tex]
Since the left side are in the same base and are multiplying, we add the exponents
[tex] {2}^{ \frac{3}{2} + x } = {2}^{ \frac{8}{5} } [/tex]
Since they have the same base we can equate them
That's
[tex] \frac{3}{2} + x = \frac{8}{5} [/tex]
[tex]x = \frac{8}{5} - \frac{3}{2} [/tex]
[tex]x = \frac{1}{10} [/tex]
Hope this helps you