Respuesta :

Answer:

The value of  annuity is [tex]P_v = \$ 32058[/tex]

Step-by-step explanation:

From the question we are told that

    The periodic payment is  [tex]P = \$ 1500[/tex]

     The  interest rate  is   [tex]r = 8\% = 0.08[/tex]

     Frequency at which it occurs in a year is  n = 2 (semi-annually )

      The number of years is  [tex]t = 22 \ years[/tex]

The  value of the annuity is mathematically represented as

             [tex]P_v = P * [1 - (1 + \frac{r}{n} )^{-t * n} ] * [\frac{(1 + \frac{r}{n} )}{ \frac{r}{n} } ][/tex](reference EDUCBA website)

 substituting values

             [tex]P_v = 1500 * [1 - (1 + \frac{0.08}{2} )^{-22 * 2} ] * [\frac{(1 + \frac{0.08}{2} )}{ \frac{0.08}{2} } ][/tex]

             [tex]P_v = 1500 * [1 - (1.04 )^{-44} ] * [\frac{(1.04 )}{0.04} ][/tex]

             [tex]P_v = 1500 * [1 - 0.178 ] * [\frac{(1.04 )}{0.04} ][/tex]

            [tex]P_v = \$ 32058[/tex]