Respuesta :

y= - 3 + 6x
4x+3y=1
4x+3(-3 + 6x) = 1
4x-9+18x-1=0
22x= 0
22x= -8
x = -8/22 = -4/11

Answer:

[tex]( \frac{5}{11} \:, - \frac{3}{11} )[/tex]

Step-by-step explanation:

6x - y = 3

4x + 3y = 1

Solve the equation for y

y = -3 + 6x

4x + 3y = 1

Substitute the given value of y into the equation

4x + 3y = 1

plug the value

[tex]4x + 3( - 3 + 6x) = 1[/tex]

Distribute 3 through the parentheses

[tex]4x - 9 + 18x = 1[/tex]

Collect like terms

[tex]22x - 9 = 1[/tex]

Move constant to R.H.S and change its sign

[tex]22x = 1 + 9[/tex]

Calculate the sum

[tex]22x = 10[/tex]

Divide both sides of the equation by 22

[tex] \frac{22x}{22} = \frac{10}{22} [/tex]

Calculate

[tex]x = \frac{5}{11} [/tex]

Now, substitute the given value of x into the equation

y = -3 + 6x

[tex]y = - 3 + 6 \times \frac{5}{11} [/tex]

Solve the equation for y

[tex]y = - \frac{3}{11} [/tex]

The possible solution of the system is the ordered pair ( x , y )

[tex](x ,\: y) = ( \frac{5}{11} ,\: - \frac{3}{11} )[/tex]

-----------------------------------------------------------

Check if the given ordered pair is the solution of the system of equations

[tex]6 \times \frac{5}{11} - ( - \frac{3}{11} ) = 3[/tex]

[tex]4 \times \frac{5}{11 } + 3 \times ( - \frac{3}{11} ) = 1[/tex]

Simplify the equalities

[tex] 3 = 3[/tex]

[tex]1 = 1[/tex]

Since all of the equalities are true , the ordered pair is the solution of the system

[tex]( \: x ,\: y \: ) = ( \frac{5}{11} \:, - \frac{3}{11} )[/tex]

Hope this helps..

Best regards!!