1. an alloy contains zinc and copper in the ratio of 7:9 find weight of copper of it had 31.5 kgs of zinc.

2. compare the following ratios

i) 2:3 and 4:5
ii) 11:19 and 19:21
iii) ½ : ⅓ and ⅓ : ¼
iv ) 1⅕ : 1⅓ and ⅖ : 3/2

v) if a : b = 6:5 and b:c = 10:9, find a:c

vi) if x : y = ⅙:⅛ and y : z = ⅛: ⅒, find X : z

sorry many questions​

Respuesta :

Answer:

Step-by-step explanation:

Question (1). An alloy contains zinc and copper in the ratio of 7 : 9.

If the weight of an alloy = x kgs

Then weight of copper = [tex]\frac{9}{7+9}\times (x)[/tex]

                                      = [tex]\frac{9}{16}\times (x)[/tex]

And the weight of zinc = [tex]\frac{7}{7+9}\times (x)[/tex]

                                      = [tex]\frac{7}{16}\times (x)[/tex]

If the weight of zinc = 31.5 kg

31.5 = [tex]\frac{7}{16}\times (x)[/tex]

x = [tex]\frac{16\times 31.5}{7}[/tex]

x = 72 kgs

Therefore, weight of copper = [tex]\frac{9}{16}\times (72)[/tex]

                                               = 40.5 kgs

2). i). 2 : 3 = [tex]\frac{2}{3}[/tex]

        4 : 5 = [tex]\frac{4}{5}[/tex]

Now we will equalize the denominators of each fraction to compare the ratios.

[tex]\frac{2}{3}\times \frac{5}{5}[/tex] = [tex]\frac{10}{15}[/tex]

[tex]\frac{4}{5}\times \frac{3}{3}=\frac{12}{15}[/tex]

Since, [tex]\frac{12}{15}>\frac{10}{15}[/tex]

Therefore, 4 : 5 > 2 : 3

ii). 11 : 19 = [tex]\frac{11}{19}[/tex]

    19 : 21 = [tex]\frac{19}{21}[/tex]

By equalizing denominators of the given fractions,

[tex]\frac{11}{19}\times \frac{21}{21}=\frac{231}{399}[/tex]

And [tex]\frac{19}{21}\times \frac{19}{19}=\frac{361}{399}[/tex]

Since, [tex]\frac{361}{399}>\frac{231}{399}[/tex]

Therefore, 19 : 21 > 11 : 19

iii). [tex]\frac{1}{2}:\frac{1}{3}=\frac{1}{2}\times \frac{3}{1}[/tex]

             [tex]=\frac{3}{2}[/tex]

     [tex]\frac{1}{3}:\frac{1}{4}=\frac{1}{3}\times \frac{4}{1}[/tex]

              = [tex]\frac{4}{3}[/tex]

Now we equalize the denominators of the fractions,

[tex]\frac{3}{2}\times \frac{3}{3}=\frac{9}{6}[/tex]

And [tex]\frac{4}{3}\times \frac{2}{2}=\frac{8}{6}[/tex]

Since [tex]\frac{9}{6}>\frac{8}{6}[/tex]

Therefore, [tex]\frac{1}{2}:\frac{1}{3}>\frac{1}{3}:\frac{1}{4}[/tex] will be the answer.

IV). [tex]1\frac{1}{5}:1\frac{1}{3}=\frac{6}{5}:\frac{4}{3}[/tex]

                  [tex]=\frac{6}{5}\times \frac{3}{4}[/tex]

                  [tex]=\frac{18}{20}[/tex]

                  [tex]=\frac{9}{10}[/tex]

Similarly, [tex]\frac{2}{5}:\frac{3}{2}=\frac{2}{5}\times \frac{2}{3}[/tex]

                       [tex]=\frac{4}{15}[/tex]                  

By equalizing the denominators,

[tex]\frac{9}{10}\times \frac{30}{30}=\frac{270}{300}[/tex]

Similarly, [tex]\frac{4}{15}\times \frac{20}{20}=\frac{80}{300}[/tex]

Since [tex]\frac{270}{300}>\frac{80}{300}[/tex]

Therefore, [tex]1\frac{1}{5}:1\frac{1}{3}>\frac{2}{5}:\frac{3}{2}[/tex]

V). If a : b = 6 : 5

     [tex]\frac{a}{b}=\frac{6}{5}[/tex]

        [tex]=\frac{6}{5}\times \frac{2}{2}[/tex]

        [tex]=\frac{12}{10}[/tex]

  And b : c = 10 : 9

  [tex]\frac{b}{c}=\frac{10}{9}[/tex]

 Since a : b = 12 : 10

 And b : c = 10 : 9

 Since b = 10 is common in both the ratios,

 Therefore, combined form of the ratios will be,

 a : b : c = 12 : 10 : 9