Respuesta :
Answer:
[tex]\large \boxed{\text{-41.2 kJ/mol}}[/tex]
Explanation:
Balanced equation: CO(g) + H₂O(g) ⟶ CO₂(g) + H₂(g)
We can calculate the enthalpy change of a reaction by using the enthalpies of formation of reactants and products
[tex]\Delta_{\text{rxn}}H^{\circ} = \sum \left( \Delta_{\text{f}} H^{\circ} \text{products}\right) - \sum \left (\Delta_{\text{f}}H^{\circ} \text{reactants} \right)[/tex]
(a) Enthalpies of formation of reactants and products
[tex]\begin{array}{cc}\textbf{Substance} & \textbf{$\Delta_{\text{f}}$H/(kJ/mol}) \\\text{CO(g)} & -110.5 \\\text{H$_{2}$O} & -241.8\\\text{CO$_{2}$(g)} & -393.5 \\\text{H$_{2}$(g)} & 0 \\\end{array}[/tex]
(b) Total enthalpies of reactants and products
[tex]\begin{array}{ccr}\textbf{Substance} & \textbf{Contribution)/(kJ/mol})&\textbf{Sum} \\\text{CO(g)} & -110.5& -110.5 \\\text{H$_{2}$O(g)} &-241.8& -241.8\\\textbf{Total}&\textbf{for reactants} &\mathbf{ -352.3}\\&&\\\text{CO}_{2}(g) & -393.5&-393.5 \\\text{H}_{2} & 0 & 0\\\textbf{Total}&\textbf{for products} & \mathbf{-393.5}\end{array}[/tex]
(c) Enthalpy of reaction [tex]\Delta_{\text{rxn}}H^{\circ} = \sum \left( \Delta_{\text{f}} H^{\circ} \text{products}\right) - \sum \left (\Delta_{\text{f}}H^{\circ} \text{reactants} \right)= \text{-393.5 kJ/mol - (-352.3 kJ/mol}\\= \text{-393.5 kJ/mol + 352.3 kJ/mol} = \textbf{-41.2 kJ/mol}\\ \text{The total enthalpy change is $\large \boxed{\textbf{-41.2 kJ/mol}}$}[/tex]