Answer:
[tex]\dfrac{-3}{5}[/tex]
Step-by-step explanation:
It is given that a terminal ray that passes through the point (4,-3).
x = 4
y = -3
Using Pythagoras theorem, the value of hypotenuse is
[tex]r=\sqrt{x^2+y^2}[/tex]
[tex]r=\sqrt{(-3)^2+(4)^2}[/tex]
[tex]r=\sqrt{9+16}[/tex]
[tex]r=\sqrt{25}[/tex]
[tex]r=5[/tex]
We, know that
[tex]\sin \theta = \dfrac{y}{r}[/tex]
[tex]\sin \theta = \dfrac{-3}{5}[/tex]
Therefore, the value of [tex]\sin \theta[/tex] is [tex]\dfrac{-3}{5}[/tex].