Respuesta :

hbj

Answer:

b. x² + 8x + 12 =

1. use the factoring X (see attachment)

2. 6 x 2 = 12; 6 + 2 = 12

3. (x + 6)(x + 2) = 0

4. x = -6, -2

c. x² + 13x + 12 =

1. 12 x 1 = 12; 12 + 1 = 13

2. (x + 12)(x + 1) = 0

3. x = -12, -1

c. x² + x - 12 =

1. 4 · (-3) = -12; 4 - 3 = 1

2. (x +4)(x - 3) = 0

3. x = -4, 3

f. x² + 15x + 36 =

1. 12 x 3 = 36; 12 + 3 = 15

2. (x + 12)(x + 3) = 0

3. x = -12, -3

hope this helps :)

Ver imagen hbj

Answer:

b) - (x + 2)(x + 6)

c) - (x + 12)(x + 1)

c) - (x - 3)(x + 4)

f) - (x + 12)(x + 3)

Step-by-step explanation:

Well to factor the given info we need to find the factors.

b)

[tex]x^2 + 8x + 12[/tex]

So 6*2 = 12

6x + 2x = 8x

x*x = x^2

Factored - (x + 2)(x + 6)

c)

[tex]x^2 + 13x + 12[/tex]

Well x*x = x^2

and 12*1 = 12

12x + x = 13x

Factored - (x + 12)(x + 1)

The second c)

[tex]x^2 + x - 12[/tex]

Well x*x = x^2

-3*4 = -12

-3x + 4x = x

Factored - (x - 3)(x + 4)

f)

[tex]x^2 + 15x + 36[/tex]

So x*x = x^2

12*3 = 36

12x + 3x = 15x

Factored - (x + 12)(x + 3)

Thus,

everything factored is (x + 2)(x + 6) , (x + 12)(x + 1) , (x - 3)(x + 4) ,

(x + 12)(x + 3).

Hope this helps :)