Answer: The length of the line B'C" is 1 unit.
Step-by-step explanation:
Given: Triangle ABC is dilated by a scale factor of 0.5 with the origin as the center of dilation , resulting in the image Triangle A'B'C'.
If A (2,2), B= (4,3) and C=(6,3).
Distance between (a,b) and (c,d): [tex]D=\sqrt{(d-b)^2+(c-b)^2}[/tex]
Then, BC [tex]=\sqrt{(3-3)^2+(6-4)^2}[/tex]
[tex]\\\\=\sqrt{0+2^2}\\\\=\sqrt{4}\\\\=2\text{ units}[/tex]
Length of image = scale factor x length in original figure
B'C' = 0.5 × BC
= 0.5 × 2
= 1 unit
Hence, the length of the line B'C" is 1 unit.