Respuesta :

Answer:

S.A=132

Step-by-step explanation:

A=[[tex]\frac{1}{2}[/tex] x b x h]2

A=[tex]\frac{1}{2}[/tex] x 4 x 3 x 2        12+50+40+30=132

A=12 cm²

A=L x W

A=10 x 5=50

A=L X W

A=10 X 4=40

A=L X W

A=10 X 3=30

Each triangular end has a surface area of (1/2)(base)(height), which in this case is (1/2)(4)(3), or 6 units^2.  There are two ends, so the total area of the ends is 12 units^2.  The three remaining sides account for the surface area

(4)(10) + (5)(10) + 3(10). or 120.

The sum of the surface areas of all five areas is 120 + 12 units^2, or 132 units^2

.Answer:

132 units^2