Respuesta :
Answer:
The missing side is [tex]B = 6.0\ cm[/tex]
The missing angles are [tex]\alpha = 56.2[/tex] and [tex]\theta = 93.8[/tex]
Step-by-step explanation:
Given
[tex]A = 10\ cm[/tex]
[tex]C = 12\ cm[/tex]
[tex]\beta = 30[/tex]
The implication of this question is to solve for the missing side and the two missing angles
Represent
Angle A with [tex]\alpha[/tex]
Angle B with [tex]\beta[/tex]
Angle C with [tex]\theta[/tex]
Calculating B
This will be calculated using cosine formula as thus;
[tex]B^2 = A^2 + C^2 - 2ACCos\beta[/tex]
Substitute values for A, C and [tex]\beta[/tex]
[tex]B^2 = 10^2 + 12^2 - 2 * 10 * 12 * Cos30[/tex]
[tex]B^2 = 100 + 144 - 240 * 0.8660[/tex]
[tex]B^2 = 100 + 144 - 207.8[/tex]
[tex]B^2 = 36.2[/tex]
Take Square root of both sides
[tex]B = \sqrt{36.2}[/tex]
[tex]B = 6.0[/tex] (Approximated)
Calculating [tex]\alpha[/tex]
This will be calculated using cosine formula as thus;
[tex]A^2 = B^2 + C^2 - 2BCCos\alpha[/tex]
Substitute values for A, B and C
[tex]A^2 = B^2 + C^2 - 2BCCos\alpha[/tex]
[tex]10^2 = 6^2 + 12^2 - 2 * 6 * 12 * Cos\alpha[/tex]
[tex]100 = 36 + 144 - 144Cos\alpha[/tex]
Collect Like Terms
[tex]100 - 36 - 144 = -144Cos\alpha[/tex]
[tex]-80 = -144Cos\alpha[/tex]
Divide both sides by -144
[tex]\frac{-80}{-144} = Cos\alpha[/tex]
[tex]0.5556 = Cos\alpha[/tex]
[tex]\alpha = cos^{-1}(0.5556)[/tex]
[tex]\alpha = 56.2[/tex] (Approximated)
Calculating [tex]\theta[/tex]
This will be calculated using cosine formula as thus;
[tex]C^2 = B^2 + A^2 - 2BACos\theta[/tex]
Substitute values for A, B and C
[tex]12^2 = 6^2 + 10^2 - 2 * 6 * 10Cos\theta[/tex]
[tex]144 = 36 + 100 - 120Cos\theta[/tex]
Collect Like Terms
[tex]144 - 36 - 100 = -120Cos\theta[/tex]
[tex]8 = -120Cos\theta[/tex]
Divide both sides by -120
[tex]\frac{8}{-120} = Cos\theta[/tex]
[tex]-0.0667= Cos\theta[/tex]
[tex]\theta = cos^{-1}(-0.0667)[/tex]
[tex]\theta = 93.8[/tex] (Approximated)