Blood is pumped from the heart at a rate of 5.0 L/min into the aorta (of radius 1.0 cm). Determine the speed of blood through the aorta in units of m/s

Respuesta :

Answer:

The speed of blood through the aorta is 0.265 m/s

Explanation:

Given;

volumetric flow rate, Q = 5.0L/min = 0.005 m³/min x 1min/60s = 8.333 x 10⁻⁵ m³/s

radius of the aorta, r = 1.0 cm = 0.01 m

Area of the aorta = πr²

Area of the aorta = π(0.01)² = 3.142 x 10⁻⁴ m²

Volumetric flow rate is given by;

Q = Av

where;

v is the speed of blood through the aorta

v = Q /A

v = (8.333 x 10⁻⁵ ) / (3.142 x 10⁻⁴)

v = 0.265 m/s

Therefore, the speed of blood through the aorta is 0.265 m/s

The blood's speed through the aorta will be "0.265 m/s". To understand the calculation, check below.

Blood and Aorta

According to the question,

Volumetric flow rate, Q = 5.0 L/min or,

                                       = 0.005 × [tex]\frac{1 \ min}{60 \ s}[/tex]

                                       = 8.333 × 10⁻⁵ m³/s    

Aorta's radius, r = 1.0 cm

We know the formula,

→ Q = A × v

or,

Speed, v = [tex]\frac{Q}{A}[/tex]

By substituting the values,

               = [tex]\frac{8.333\times 10^{-5}}{3.142\times 10^{-4}}[/tex]

               = 0.265 m/s

Thus the above answer is correct.

Find out more information about Blood here:

https://brainly.com/question/9797618