Respuesta :

Answer:

[tex] Area = 538.5 m^2 [/tex]

Step-by-step Explanation:

Given:

∆XVW

m < X = 50°

m < W = 63°

XV = w = 37 m

Required:

Area of ∆XVW

Solution:

Find side length XW using Law of Sines

[tex] \frac{v}{sin(V)} = \frac{w}{sin(W)} [/tex]

W = 63°

w = XV = 37 m

V = 180 - (50+63) = 67°

v = XW = ?

[tex] \frac{v}{sin(67)} = \frac{37}{sin(63)} [/tex]

Cross multiply

[tex] v*sin(63) = 37*sin(67) [/tex]

Divide both sides by sin(63) to make v the subject of formula

[tex] \frac{v*sin(63)}{sin(63)} = \frac{37*sin(67)}{sin(63)} [/tex]

[tex] v = \frac{37*sin(67)}{sin(63)} [/tex]

[tex] v = 38 [/tex] (approximated to nearest whole number)

[tex] XW = v = 38 m [/tex]

Find the area of ∆XVW

[tex] area = \frac{1}{2}*v*w*sin(X) [/tex]

[tex] = \frac{1}{2}*38*37*sin(50) [/tex]

[tex] = \frac{38*37*sin(50)}{2} [/tex]

[tex] Area = 538.5 m^2 [/tex] (to nearest tenth).