What is the product?


StartFraction 2 a minus 7 Over a EndFraction times StartFraction 3 a squared Over 2 a squared minus 11 a + 14 EndFraction

StartFraction 3 Over a minus 2 EndFraction

StartFraction 3 a Over a minus 2 EndFraction

StartFraction 3 a Over a + 2 EndFraction

StartFraction 3 Over a + 2 EndFraction

Respuesta :

Answer:

Option B.

Step-by-step explanation:

The given expression is

[tex]\dfrac{2a-7}{a}\times \dfrac{3a^2}{2a^2-11a+14}[/tex]

We need to find the product.

The given expression can be rewritten as

[tex]\dfrac{2a-7}{a}\times \dfrac{3a^2}{2a^2-7a-4a+14}[/tex]

[tex]\dfrac{2a-7}{a}\times \dfrac{3a^2}{a(2a-7)-2(2a-7)}[/tex]

[tex]=\dfrac{2a-7}{a}\times \dfrac{3a^2}{(2a-7)(a-2)}[/tex]

[tex]=\dfrac{(2a-7)3a^2}{a(2a-7)(a-2)}[/tex]

Cancel out the common factors.

[tex]=\dfrac{3a}{a-2}[/tex]

So, [tex]\dfrac{2a-7}{a}\times \dfrac{3a^2}{2a^2-11a+14}=\dfrac{3a}{a-2}[/tex]

Therefore, the correct option is B.

The product of the fractions as given is; 3a/(a-2)

The fractions given are;

[tex]\frac{2a - 7}{a} \times \frac{3 {a}^{2}}{2 {a}^{2} - 11a + 14} [/tex]

[tex]\frac{2a - 7}{a} \times \frac{3 {a}^{2}}{2 {a}^{2} - 7a - 4a + 14} [/tex]

  • (2a - 7)/a × 3a²/a(2a -7) -2(2a -7)

  • (2a -7)/a × 3a²/(2a -7) (a -2)

So that we have;

3a²/a(a- 2)

= 3a/(a -2)

Read more on factorisation;

https://brainly.com/question/25829061