Respuesta :

Answer:

area of sector:

[tex] \frac{theta}{360} \times \pi \: {r}^{2} [/tex]

[tex] \frac{165}{360} \times \frac{22}{7} ( {8}^{2} )[/tex]

[tex] \frac{11}{24} \times \frac{1408}{7} [/tex]

[tex] \frac{1936}{21} [/tex]

[tex]92.19 \: {in}^{2} [/tex]

Answer:

the area of the sector can be rounded to [tex]92.2\,\,in^2[/tex]

Step-by-step explanation:

Use the fraction of the area of the circle associated with the red sector. Use a proportion to find the appropriate fraction knowing that a full circle [tex](360^o)[/tex] corresponds to the area:

[tex]Area=\pi\,R^2=\pi\, (8\,in)^2= 64\, \pi\,\,in^2[/tex]

then the proportion goes like:

[tex]\frac{64\,\pi\,\,in^2}{360^o} =\frac{sector}{165^o} \\ sector=\frac{64\,\pi\,165^o}{360^o}\,\,in^2\\sector\approx 92.15\,\,in^2[/tex]

Therefore, the area of the sector can be rounded to [tex]92.2\,\,in^2[/tex]