Respuesta :

Answer:  A

Step-by-step explanation:

The standard form of a cosine equation is: y = A cos (Bx - C) + D  where

  • Amplitude (A) is the distance from the center to the max
  • Period (P) is the length of the function = 2π/B  
  • Phase Shift is the distance the max is moved from the y-axis = C/B
  • Center (D) is the imaginary line between the max and min

Plot the points (see graph below).

A = 28

[tex]\dfrac{1}{2}P=6\quad \rightarrow \quad P=12\\\\\\P=\dfrac{2\pi}{B}\qquad \rightarrow \qquad 12=\dfrac{2\pi}{B}\qquad \rightarrow \qquad \large\bold{B=\dfrac{\pi}{6}}[/tex]

Phase Shift = 7 = C/B

                      [tex]7=\dfrac{C}{\frac{\pi}{6}}\qquad \rightarrow \qquad \large\bold{C=\dfrac{7\pi}{6}}[/tex]

D = 49

Input the values of A, B, C, and D into the standard form of a cosine equation to get:

[tex]\large\boxed{y=28\cos \bigg(\dfrac{\pi}{6}x-\dfrac{7\pi}{6}\bigg)+49}[/tex]

Ver imagen tramserran