Answer:
[tex]\displaystyle 1 = \frac{cos∠A}{cos∠B}[/tex]
Step-by-step explanation:
[tex]\displaystyle \frac{OPPOSITE}{HYPOTENUSE} = sin\:θ \\ \frac{ADJACENT}{HYPOTENUSE} = cos\:θ \\ \frac{OPPOSITE}{ADJACENT} = tan\:θ \\ \frac{HYPOTENUSE}{ADJACENT} = sec\:θ \\ \frac{HYPOTENUSE}{OPPOSITE} = csc\:θ \\ \frac{ADJACENT}{OPPOSITE} = cot\:θ[/tex]
Since this is a 45°-45°-90° triangle, you will have two IDENTICAL legs and the hypotenuse is the value of the leg multiplied by the square root of 2:
[tex]\displaystyle x\sqrt{2} = HYPOTENUSE \\ x = LEGS \\ \\ 4,242640687 ≈ 3\sqrt{2} \\ \\ \frac{3}{4,242640687} ≈ cos∠B \\ \frac{3}{4,242640687} ≈ cos∠A \\ \\ \frac{\frac{3}{4,242640687}}{\frac{3}{4,242640687}} = 1[/tex]
I am joyous to assist you anytime.