M1 Matrix is:
-5, 3
-8, 5
A) Find the value in the first row and first column of the product M^-1M using matrix multiplication. Select the correct expression below and fill in the answer box to complete your selection.
B) Find the value in the first row and second column of the product M^-1M using matrix multiplication. Select the correct expression below and fill in the answer box to complete your selection.
C) Find the value in the second row and first column of the product M^-1M using matrix multiplication
D) Find the value in the second row and second column of the product M^-1M using matrix multiplication

Respuesta :

Answer:

(a)First Row, First Column =1

(b)First Row, second Column =0

(c)Second Row, First Column =0

(d)Second Row, second Column =1

Step-by-step explanation:

Given matrix [tex]M=\left(\begin{array}{ccc}-5&3\\-8&5\end{array}\right)[/tex]

The Inverse of a 2X2 matrix

[tex]A=\left(\begin{array}{ccc}a&b\\c&d\end{array}\right)[/tex]

can be found using the following:

[tex]A^{-1}=\dfrac{1}{ad-bc} \left(\begin{array}{ccc}d&-b\\-c&a\end{array}\right)[/tex]

Therefore:

[tex]M^{-1}=\dfrac{1}{(5*-5)-(3*-8)} \left(\begin{array}{ccc}5&-3\\8&-5\end{array}\right)\\=-1\left(\begin{array}{ccc}5&-3\\8&-5\end{array}\right)\\=\left(\begin{array}{ccc}-5&3\\-8&5\end{array}\right)[/tex]

Next, we find the product [tex]M^{-1}M[/tex]

[tex]M^{-1}M=\left(\begin{array}{ccc}-5&3\\-8&5\end{array}\right)\left(\begin{array}{ccc}-5&3\\-8&5\end{array}\right)\\=\left(\begin{array}{ccc}-5*-5+3*-8&-5*3+3*5\\-8*-5+5*-8&-8*3+5*5\end{array}\right)\\=\left(\begin{array}{ccc}1&0\\0&1\end{array}\right)[/tex]

Therefore:

(a)First Row, First Column =1

(b)First Row, second Column =0

(c)Second Row, First Column =0

(d)Second Row, second Column =1

NOTE: The multiplication of a matrix and its inverse always gives the identity matrix as seen above,