Answer:
a = 94
b = -66√3
Step-by-step explanation:
Given z = [tex]-1-i\sqrt{3}[/tex]
[tex]z^{6}=(z^{3})^{2}[/tex]
[tex](-1-i\sqrt{3})^6=[(-1-i\sqrt{3})^3]^2[/tex]
[tex]=[-(1+i\sqrt{3})^3]^{2}[/tex]
[tex]=[(1+i\sqrt{3})^3]^2[/tex]
[tex]=[(1)^3+(i\sqrt{3})^3+3(1)^2(i\sqrt{3})+3(1)(i\sqrt{3})^2]^2[/tex] [(a + b)³ = a³ + b³ + 3a²b + 3ab²]
= [1 + 3i² + 3i√3 + 9i²]²
= [1 - 3 + 3i√3 - 9]²
= [-11 + 3i√3]²
= (11)² -2(3i√3)(11) + (3i√3)²
= 121 - 66i√3 + 27i²
= 121 - 66i√3 - 27
= (94 - 66i√3)
Comparing it with (a + bi),
a = 94 and b = -66√3