Answer:
B
Step-by-step explanation:
Recall that [tex](g \circ f)(x)=g(f(x))[/tex]. In other words, we need to find [tex]f(x)[/tex] first and then put that value into [tex]g(x)[/tex].
We need to find [tex](g \circ f)(4) =g(f(4))[/tex]
[tex]f(x)=4x-2\\[/tex]
[tex]f(4)=4(4)-2=14[/tex]
[tex](g \circ f)(4) =g(f(4))=g(14)[/tex]
[tex]g(x)=-6x^2-8x-8[/tex]
[tex]g(14)=-6(14)^2-8(14)-8[/tex]
[tex]g(14) = (g \circ f) (4) =-1296[/tex]