Respuesta :

Answer:

[tex]\frac{dy}{dx}[/tex] = [tex]\frac{1-y}{1+x}[/tex]

Step-by-step explanation:

Differentiate xy using the product rule, then

Given

x - y = xy

1 - [tex]\frac{dy}{dx}[/tex] = x. [tex]\frac{dy}{dx}[/tex] + y. 1 = x[tex]\frac{dy}{dx}[/tex] + y ( subtract 1 from both sides )

- [tex]\frac{dy}{dx}[/tex] = x [tex]\frac{dy}{dx}[/tex] + y - 1 ( subtract x [tex]\frac{dy}{dx}[/tex] from both sides )

- [tex]\frac{dy}{dx}[/tex] - x [tex]\frac{dy}{dx}[/tex] = y - 1 ( multiply through by - 1 )

[tex]\frac{dy}{dx}[/tex] + x[tex]\frac{dy}{dx}[/tex] = 1 - y

[tex]\frac{dy}{dx}[/tex] (1 + x) = 1 - y ← divide both sides by (1 + x)

[tex]\frac{dy}{dx}[/tex] = [tex]\frac{1-y}{1+x}[/tex]

Answer:

- \frac{dy}{dx} = x. \frac{dy}{dx}