Answer:
[tex](\dfrac{94}{100})^{10} \ or\ \approx 0.54[/tex]
Step-by-step explanation:
Given :
Probability that a house in an urban area will be burglarized,
[tex]p =6\%=\dfrac{6}{100}[/tex]
To find:
Probability that none of the houses randomly selected from 10 houses will be burglarized = ?
[tex]P(r=0) =?[/tex]
Solution:
This question is related to binomial distribution where:
[tex]p =\dfrac{6}{100}[/tex]
[tex]\Rightarrow[/tex] Probability that a house in an urban area will not be burglarized,
[tex]q =1-6\%=94\%=\dfrac{94}{100}[/tex]
Formula is:
[tex]P(r=x)=_nC_xp^xq^{n-x}[/tex]
Where n is the total number of elements in sample space and
x is the number selected from the sample space.
Here, x = 10 and
x = 0
[tex]\therefore P(r=0)=_nC_0p^0q^{10-0}\\\Rightarrow 1 \times (\dfrac{6}{100})^0\times (\dfrac{94}{100})^{10}\\\Rightarrow 1\times (\dfrac{94}{100})^{10}\\\Rightarrow (\dfrac{94}{100})^{10}\\\\\Rightarrow (0.94)^{10}\\\Rightarrow \approx 0.54[/tex]