Answer:
t = 166 years
Explanation:
In order to calculate the amount of years that electrons take to cross the complete transmission line. You first calculate the drift speed of the electrons by using the following formula:
[tex]v_d=\frac{I}{nqA}[/tex] (1)
I: current on the wire = 1,010A
n: free charge density = 8.50*10^28 electrons/m^3
A: cross-sectional area of the transmission line = π*r^2
r: radius of the cross-sectional area = 2.00cm = 0.02m
You replace the values of the parameters in the equation (1):
[tex]v_d=\frac{1,010A}{(8.50*10^{28}electron/m^3)(1.6*10^{-19}C)(\pi (0.02m)^2)}\\\\v_d=5.9*10^{-5}\frac{m}{s}[/tex]
Next, you use the following formula:
[tex]t=\frac{x}{v_d}[/tex] (2)
x: length of the line transmission = 310km = 310,000m
You replace the values of vd and x in the equation (2):
[tex]t=\frac{310,000m}{5.9*10^{-5}m/s}=5.24*10^9s[/tex]
Finally, you convert the obtained t to seconds
[tex]t=5.24*10^9s*\frac{1\ year}{3.156*10^7s}=166.03\ years[/tex]
The electrons take approximately 166 years to travel trough the complete transmission line