A cooler has a temperature of 32 degrees Fahrenheit. A bottled drink is placed in the cooler with an initial temperature of
70 degrees Fahrenheit. The function
[tex]f(t) = {ce}^{ (- kt)} + 32[/tex]
,represents the situation, where t is time in minutes, C is a
constant, and k is a constant.
After 3 minutes the bottle has a temperature of 42 degrees. What is the approximate value of k?​

Respuesta :

Answer:

[tex]k \approx 0.44[/tex]

Step-by-step explanation:

Given function:

[tex]f(t) = (ce)^{-kt}+32[/tex]

As per question statement:

Initial temperature of bottle is 70 [tex]^\circ F[/tex].

i.e. when time = 0 minutes, f(t) = 70 [tex]^\circ F[/tex]

[tex]70 = ce^{-k\times 0}+32\\\Rightarrow 38 = ce^{0}\\\Rightarrow c = 38[/tex]

After t = 3, f(t) = 42[tex]^\circ F[/tex]

[tex]42 = 38 \times e^{-k\times 3}+32\\\Rightarrow 42-32 = 38 \times e^{-3k} \\\Rightarrow 10 = 38 \times e^{-3k} \\\Rightarrow e^{3k} = \dfrac{38}{10}\\\Rightarrow e^{3k} = 3.8\\\\\text{Taking } log_e \text{both the sides:}\\\\\Rightarrow log_e {e^3k} = log_e {3.8}\\\Rightarrow 3k \times log_ee=log_e {3.8} (\because log_pq^r=r \times log_pq)\\\Rightarrow 3k \times 1=log_e {3.8}\\\Rightarrow 3k = 1.34\\\Rightarrow k = \dfrac{1.34}{3}\\\Rightarrow k \approx 0.44[/tex]

Hence, the value is:

[tex]k \approx 0.44[/tex]