contestada

A brass ring of diameter 10.00 cm at 19.0°C is heated and slipped over an aluminum rod with a diameter of 10.01 cm at 19.0°C. Assuming the average coefficients of linear expansion are constant. What if the aluminum rod were 10.02 cm in diameter?

Respuesta :

Answer:

the final temperature is [tex]\mathbf{T_f = -377.2^0 C}[/tex]

Explanation:

The change in length of a bar can be expressed with the relation;

[tex]\Delta L = L_f - L_i[/tex]   ---- (1)

Also ; the relative or fractional increase in length  is proportional to the change in temperature.

Mathematically;

ΔL/L_i ∝ kΔT

where;

k is replaced with ∝ (the proportionality constant )

[tex]\dfrac{ \Delta L}{L_i}=\alpha \Delta T[/tex]    ---- (2)

From (1) ;

[tex]L_f = \Delta L + L_i[/tex]  ---  (3)

from (2)

[tex]{ \Delta L}=\alpha \Delta T*{L_i}[/tex]  ---- (4)

replacing (4) into (3);we have;

[tex]L_f =(\alpha \Delta T*{L_i} ) + L_i[/tex]

On re-arrangement; we have

[tex]L_f = L_i + \alpha L_i (\Delta T )[/tex]

from the given question; we can say that :

[tex](L_f)_{brass}}} = (L_f)_{Al}[/tex]

So;

[tex]L_{brass} + \alpha _{brass} L_{brass}(\Delta T) = L_{Al} + \alpha _{Al} L_{Al}(\Delta T)[/tex]

Making the change in temperature the subject of the formula; we have:

[tex]\Delta T = \dfrac{L_{Al}-L_{brass}}{\alpha _ {brass} L_{brass}-\alpha _{Al}L_{Al}}[/tex]

where;

[tex]L_{Al}[/tex] = 10.02 cm

[tex]L_{brass}[/tex] = 10.00 cm

[tex]\alpha _{brass}[/tex] = 19 × 10⁻⁶ °C ⁻¹

[tex]\alpha_{Al}[/tex] = 24  × 10⁻⁶ °C ⁻¹

[tex]\Delta T = \dfrac{10.02-10.00}{19*10^{-6} \ \ {^0}C^{-1} *10.00 -24*10^{-6} \ \ {^0}C^{-1} *10.02}[/tex]

[tex]\Delta T[/tex] = −396.1965135 ° C

[tex]\Delta T[/tex] ≅ −396.20  °C

Given that the initial temperature [tex]T_i = 19^0 C[/tex]

Then ;

[tex]\Delta T = T_f - T_i[/tex]

[tex]T_f = \Delta T + T_I[/tex]

Thus;

[tex]T_f =(-396.20 + 19.0)^0 C[/tex]

[tex]\mathbf{T_f = -377.2^0 C}[/tex]

Thus; the final temperature is [tex]\mathbf{T_f = -377.2^0 C}[/tex]