Three masses are located in the x-y plane as follows: a mass of 6 kg is located at (0 m, 0 m), a mass of 4 kg is located at (3 m, 0 m), and a mass of 2 kg is located at (0 m, 3 m). Where is the center of mass of the system?
A. (1 m, 2 m)
B. (2 m, 1 m)
C. (1 m, 1 m)
D. (1 m, 0.5 m)
E. (0.5 m, 1 m)

Respuesta :

Answer:

D. (1m, 0.5m)

Explanation:

The center of mass (or center of gravity) of a system of particles is the point where the weight acts when the individual particles are replaced by a single particle of equivalent mass. For the three masses, the coordinates of the center of mass C(x, y) is given by;

x = (m₁x₁ + m₂x₂ + m₃x₃) / M       ----------------(i)

y = (m₁y₁ + m₂y₂ + m₃y₃) / M       ----------------(ii)

Where;

M = sum of the masses

m₁ and x₁ = mass and position of first mass in the x direction.

m₂ and x₂ = mass and position of second mass in the x direction.

m₃ and x₃ = mass and position of third mass in the x direction.

y₁ , y₂ and y₃ = positions of the first, second and third masses respectively in the y direction.

From the question;

m₁ = 6kg

m₂ = 4kg

m₃ = 2kg

x₁ = 0m

x₂ = 3m

x₃ = 0m

y₁ = 0m

y₂ = 0m

y₃ = 3m

M = m₁ + m₂ + m₃ = 6 + 4 + 2 = 12kg

Substitute these values into equations (i) and (ii) as follows;

x = ((6x0) + (4x3) + (2x0)) / 12

x = 12 / 12

x = 1 m  

y = (6x0) + (4x0) + (2x3)) / 12

y = 6 / 12

y = 0.5m

Therefore, the center of mass of the system is at (1m, 0.5m)